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15.1 Introduction

Software engineering is an established discipline for the systematic creation of

large and complex software systems. Relatively more recent are attempts to sys-

tematise the creation and management of large data sets, in data engineering. A key

feature of these disciplines is managing engineering processes using several stages

that form a development life cycle. This leads to a methodical process for devel-

opment and separation of work into modular elements. A challenge when using this

approach is integrating software engineering life cycles with the wider context of

the software, for example, business processes, user requirements or indeed other

codependent development life cycles. This chapter is on combining software

engineering with data engineering to enable better project management, foster

reuse and harness best practice from two seeming disparate domains.

The presented methodology is created from experiences on the ALIGNED

project, a large, interdisciplinary research project that applies state-of-the-art soft-

ware and data engineering techniques for the development of real-world systems.

Several use cases have been identified that are challenging due to a lack of

coherence between the software and data engineering, from collection and man-

agement of anthropological research to cataloguing and exploration of jurispru-

dence data and machine interpretation of large encyclopaedic data sets.

In the project, several state-of-the-art tools are under development from both

domains such as Booster [1], the Model Catalogue [2], RDFUnit [3], Repair

Framework and Notification (RFN), Ontology Repair and Enrichment (ORE),

Dacura [4], the PoolParty Confluence/JIRA Data Extractor (CJDE) [5] and External
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Link Validation (ELV) and the Unified Governance Plugins (UGP) [6]. The meth-

odology described in this paper is used as an initial framework to support the

combination, development and application of these systems, to address the project

goals. These tools would not ordinarily or easily be use or developed in unison, due

to the differing approaches of software and data engineering.

The importance of the presented methodology is clear: by approaching software

and data engineering life cycles coherently, efficient reuse of artefacts and applying

established best practice from both domains become possible. This chapter dis-

cusses the issues of integrating the two fundamentally differing approaches to

building systems. The data engineering approach broadly involves building tools

that act on a wide range of data, while the approach taken in software engineering is

to restrict and enforce the acceptable data, making these two approaches difficult to

combine in practice.

There are several further reasons that make a combined methodology impracti-

cal. Each of the life cycles can have multiple stages, which can vary across life

cycles. Creating a single methodology that encompasses all of these stages is

problematic because there are many possible ordering and interleaving of process

steps and there are a range of possible software and data engineering life cycles that

a project may use. Furthermore, software engineering life cycles tend to take a

prescriptive approach to software development, whereas data engineering life

cycles tend to be descriptive. The two approaches also diverge on handling unex-

pected data, as data engineering tools tend to filter from a large range of inputs,

which leads to failure-tolerant systems, while the fail-fast or fail-safe approaches of

software engineering mean systems are expected to halt on unexpected data or deal

with specific classes of error. These differences mean that dependencies between

the two approaches can lead to duplication of effort, complexity in the project

planning and incompatible systems due to the differing development philosophies.

Instead of a single monolithic methodology, this chapter presents a combined

meta-methodology, which consists of a lightweight, descriptive method for com-

bining and pairing of software and data engineering life cycles. The methodology

consists of a matrix of synchronisation points that are defined on a project-by-

project basis and informed by the opportunities and requirements for reuse between

two loosely coupled life cycles.

This chapter is structured as follows: Sect. 15.2 presents an introduction to

established software engineering and data engineering project life cycles.

Section 15.3 contains a discussion on the major issues with a combined methodol-

ogy. In Sect. 15.4, the methodology is presented in essential form, which consists of

a flexible generic mechanism to track synchronisation between separate project life

cycles. The tools and use cases of the ALIGNED project are analysed post hoc

using the methodology, to form the initial evaluation of the methodology in Sect.

15.5. In Sect. 15.6, a discussion of related work is presented. The chapter concludes

with plans to further apply, develop and evaluate the methods described.

368 S.M. Shah et al.



15.2 Software and Data Engineering Project Life Cycles

There are several software engineering methodologies that could be considered for

the alignment between software and data engineering. The subset presented here is

not intended to be complete; instead an overview of some prominent and notable

methodologies is presented.

In the waterfall model [7], the development process is seen as a series of

downwards flowing, strictly linear steps towards an end software product. The

ordering and kinds of steps can vary, but typically include “analysis”, “design”,

“implementation”, “validation” and “maintenance”, as depicted in Fig. 15.1. The

process mimics the traditional process for large-scale physical engineering projects.

This methodology was first presented as an example of how not to develop

software; it is notable for observing the effects of an ordered set of distinct steps

for software development. Later adaptations addressed the rigidity by allowing

earlier steps to be revisited. Several derivative methods have since been developed

including the incremental waterfall, evolutionary model, spiral model and struc-

tured systems analysis and design method [8].

Rapid application development (RAD) [9] and prototyping promote the role of

early prototyping to inform and shape further development iterations. Rapid appli-

cation development was proposed in response to the cumbersome, inflexible

waterfall-like techniques, but is no longer used as a stand-alone methodology.

Agile methodologies include techniques such as test-driven development, extreme

programming, feature-driven development and scrum. These so-called lightweight

methods focus on delivering useful software frequently, closely working with users,

simplicity and adaptability to change. The principles are further set out in the Agile

Fig. 15.1 Typical software

engineering project life

cycle stages
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Manifesto [10]. Essentially, the agile methods are designed to be reactive to the

needs of the users, rather than relying on rigid one-off steps or specific languages or

processes. Agile tends to afford greater trust to developers and teams to define their

own processes, architectures and the selection of appropriate languages and tools.

Model-driven software development [11] revolves around the creation of high-

quality, detailed models at each stage of the development process. The method

relies upon the availability of sophisticated tools that use models to derive software

artefacts, by a process of transformation. For example, the transformations can be

used to translate designs into software implementations and models into test cases.

Model-driven development aims to bring a greater level of formality to each stage

of development, which can mean new tools and languages must be developed. The

methodology is closely related to the techniques found in formal methods, gener-

ative programming and computer-aided software engineering. Like agile develop-

ment, it does not enforce a specific set of steps, tools or languages, but instead

provide a general framework within which software can be developed.

The linked open data life cycle consists of seven stages for data engineering and

is described in detail by Auer et al. [12]. Essentially, the eight stages shown in

Fig. 15.2 relate to the capture and management of data to ensure the data is

consistent with the linked data principles. The process can begin at any stage and

stages may be omitted, so the Extract phase can be used to take information

represented in unstructured form or conforming to other structured or semi-

structured formalisms and map it to the RDF data model. Once there is enough

data for the intended purpose of the data, tools are required for efficient Store and
Query of the data in triple form. The next phase is Author to manually create,

modify and extend the structured data. As there can be many publications and

Fig. 15.2 Linked open data

life cycle adapted (Adapted

from Ref. [12])
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sources of information about the subjects in the store, Links between data sets must

be appropriately established. Since linked data relies on triples as the basic unit of

data, information can be captured without the need for a high-level schema, Enrich
and Classify is necessary to capture high-level structures, in order that data can be

analysed and reusable queries can be performed. Importantly, the Quality of the

data must be analysed and used for Evolve and Repair. Finally, once data has passed
these phases, it should be made available for end users to Search, Browse and
Explore, and the process can continue to refine and improve the data set.

15.3 Challenges for Projects Combining Software
and Data Engineering

This chapter focuses on the alignment between software and data engineering life

cycles for managing projects. This section sets out the key differences in the

approaches as challenges for a combined methodology that is useful in practice.

Methodologies for software and data engineering are created for the separation

of work into distinct stages during development and are sometimes referred to as

life cycles, processes or methods. Each self-contained stage organises work into

separate subtasks to be carried out in order to produce an end result. The stages of a

methodology are usually followed linearly, and each stage results in one or more

artefacts that inform subsequent stages; both are typically performed iteratively,

such that the results of each iteration may be used and provide requirements for the

next. Both engineering life cycles have similar goals: the management, manipula-

tion and interpretation of data systems for eventual consumption by the end user;

however, this task is approached from two divergent doctrines. Unsurprisingly, data

engineering is data oriented—the data is the principal concern; in software engi-

neering, it is the software programs that manipulate data that are the fundamental

product. The software engineering life cycle results in a multi-author software

artefact; in data engineering the result is a multi-origin data artefact.

While the software and data engineering life cycles produce different kinds of

artefacts, there are several potential advantages of having an integrated methodol-

ogy. Firstly, there is a scope for overlap in processes in each methodology. Software

engineering techniques are employed to create software for data engineering

(or applications that consume or manipulate the data artefacts), and data engineer-

ing processes often affect the software engineering life cycle. However, the two

processes often run separately and in parallel to each other with few synchronisa-

tion points. Furthermore, artefacts produced in data engineering processes should

ideally be reused in software engineering and vice versa, with reuse being a

fundamental principle in both software and data engineering. This can in turn

lead to software that more closely reflects the domain, and software more tailored

to the data, at lower effort.
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In metamodelling, data is stratified across so-called metalevels with each level

used to define the primitives of the lower levels. So, instance or user data exists at

level M0, which is defined in terms of the system models at level M1, which records

the software and schemas to which instance data must conform. There are further

metalevels, notably M2 for defining metamodels, where tools for software engi-

neering processes are defined. Considering the metalevels, software and data

engineering processes tend to be concerned with levels M1 and M0, but with

differing approaches. Metalevels are a conceptual construct that simplify the

definition and comprehension of complex software, by allowing separation of

concerns. Existing software and data engineering data, programs and development

tools can be expressed in terms of these metalevels, as shown in Fig. 15.3. Tools

developed at the M2 level can be used and reused by developers at the M1 level

where each new problem has common aspects that are dealt with elegantly by the

M2 tools.

The approach of software engineering is to create software at the M1 level based

on models that are fixed at development time and rarely change. The data that is

accepted by the software is limited, and the software usually has well-defined

functionality, which can involve quite complex data-dependent manipulation.

This amounts to what is known as the “closed world” assumption [13]; although

Fig. 15.3 Metalevel hierarchy in model-driven engineering
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it is possible to develop software without this constraint, this assumption is typical

for commercial software. Tools engineered this way rely on high-quality data, and

the premise is that the system should only act on fixed models and metamodels.

This means that software will fail once data is encountered that does not conform to

the expected model. Software engineering life cycles tend to be prescriptive with a

set of procedures that must be followed in order, so a system developed using a

methodology cannot be implemented until a design is in place.

Data engineering processes tend to use data-independent software tools that

consume M1 level schemas, ontologies and vocabularies, to manipulate instance

data in a generic way, at the M0 level. Tools to define and manipulate the schemas,

ontologies and vocabularies are essential to data engineering. These tools tend to be

less restrictive on the data accepted as input. Higher complexity in data processing

and the ability to handle unexpected or low-quality data may require higher

computational and engineering overhead; however, this usually results in tools

that can be reused for unrelated data sets. The tools tend to be tolerant of

low-quality data, in the sense that any unexpected data is ignored without

interrupting processing. The methodology for data engineering tends to be descrip-

tive—used more as a set of guidelines than a rigorous process, so, for example,

classification and enrichment can be carried out without interlinking and fusing.

The contrasting approaches of software and data engineering are shown in

Fig. 15.4.

This dissimilarity between the two processes means that combining the two into

a single monolithic methodology is problematic. A choice would need to be made, a

priori, about prescriptive versus descriptive, fail-fast versus failure tolerant, the

selection of a specific data engineering and software engineering “flavour”, the

ordering and interleaving of process steps and so on. This would ultimately result in

a methodology that favours the perspective of either software or data engineering

and may even result in a worst-of-both-worlds scenario. The methodology

Fig. 15.4 Software and data engineering: approaches to software and data set development
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presented here will not set out universal commandments, with multiple combined

points of failure or a prescribed, redefined set of steps derived from either method.

Instead, the aim is to try to integrate the best of both.

The methodology is based on the processes used in the ALIGNED project,

where data engineering and software engineering are combined in practice. This

means the methodology reflects on the observed practices and experiences of the

ALIGNED consortium. This also means that the methodology may, initially at

least, be specific to the tools and use cases of the ALIGNED project. Many

techniques are used for data engineering and software engineering; rather than

selecting and combining a single one of each, a more generic approach is suggested.

We propose the concept of an agile meta-methodology. This gives the software
and data engineering practitioners a lightweight, basic method for combining their

own methods and processes. This should, by design, be adaptable and reusable

depending on the software engineering and data engineering context. The method-

ology provides practitioners with a system that is largely controlled by the meth-

odology users and works practically on a project-by-project basis.

15.4 Methodology for Combined Software and Data
Engineering

This section outlines the proposed meta-methodology for combined software and

data engineering in ALIGNED. It is important to note that the present methodology

is in under development and is expected to evolve and develop as the project goes

on, based on the needs of the consortium and the project findings. Several areas of

the method may be extended, based on observations of practice.

As a lightweight methodology, the technique requires some initial setup and

maintenance by the software and data engineering processes. The main setup task

for combined software and data engineering is to determine the synchronisation

points between the software engineering and data engineering. A synchronisation

point is at any pair of points in the two life cycles where specific artefacts and

processes should be shared between software and data engineering processes. Once

the synchronisation points are determined, they can be used during the project to

resynchronise as development to the artefacts occurs.

In order to visualise and understand the synchronisation points between data

engineering and software engineering, a table can be created that combines the two

life cycles. The table allows the developers in both life cycles to determine where in

each of the two life cycles synchronisation should happen. As shown in Table 15.2,

the table columns are the software engineering life cycle stages, and the rows are

the data engineering life cycle stages. The software engineering or data engineering

life cycle stages can be used for rows or columns, as desired. Importantly, the exact

stages of the software engineering or data engineering used may change depending

on the data engineering or software engineering methodology used in the particular
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project. The table cells represent intersections between the software and data

engineering life cycles, where artefacts can be reused between life cycles, and are

represented in Table 15.2 as tools that facilitate this reuse.

Before the software engineering and data engineering methodologies can be

combined, terminology and equivalence between the terms must be agreed upon

within a project. A standard equivalence between the generic concepts in data,

model-driven software and program language engineering is shown in Table 15.1.

Depending upon the scope of the project, the equivalence may not be as direct as

those shown. So, for example, a particular upper ontology may be used as a model

in software engineering, which may be represented at program runtime in practice,

for a particular project. The abstraction level at which each artefact is expected to

be used when shared between data engineering and software engineering processes

should be documented as part of the process.

Table 15.2 shows an example of the incomplete synchronisation table for the

ALIGNED project. The acronyms used here are expanded in more detail in

Table 15.3. It uses the data engineering life cycle stages defined in the LOD2

project [12] and the software engineering life cycle stages used in the ALIGNED

project. In this table, the synchronisation points indicate where data engineering

tools are expected to interoperate with the software engineering processes and vice

versa. Each entry in the table indicates a point that requires collaborative effort

between software and data engineering processes.

Table 15.1 Comparison of terminologies in software and data engineering

Data engineering Software engineering Programming Metalevel

Schema, ontology language Meta metamodel Grammar notation M3

Upper ontology Metamodel Language grammar M2

Domain ontology, schema Model Program definition M1

Triple, data set Instance, object Program runtime M0

Table 15.2 An in-progress table of the synchronisation points on the ALIGNED project

Software engineering

Data engineering Analysis Design Implementation Validation Maintenance

Manual revision/

author

UGP UGP Dacura

Interlink/fuse

Classify/enrich ORE Model

Cat.

Quality analysis Dacura ORE Dacura

Evolve/repair ORE Dacura RFN

Search/browse/

explore

Model

cat.

Booster

Extract Dacura CJDE

Store/query Booster
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For example, the Model Catalogue tool as presented in [1] appears as a synchro-

nisation between the design phase of the software engineering life cycle and the

classify/enrich phase of the data engineering life cycle. In the context of the

ALIGNED project, this means the Model Catalogue can produce an artefact

(a model) that can be consumed by the data engineering “classify” phase, as a

schema. In this case, the Model Catalogue can also consume schemas from the data

engineering life cycle and use them as models in the software engineering life

cycle. The identification of synchronisation points is very much dependent on the

project and tools involved and must be done with agreement between software and

data engineering processes.

The filled-in table can then be used during the project to trigger discussion and

collaboration between software and data engineers. In the Model Catalogue exam-

ple, this means if a new model has been created as a result using of the Model

Catalogue, the model may need to be passed to the data engineering process. The

exact formats and mechanism of the interchange must be decided on a case-by-case

basis and requires close collaboration between the Model Catalogue developers and

the schema producers to agree the format and processes for the exchange. The

exchanged artefacts can include specific items such as schemas or less formal

documentary artefacts such as a list of requirements.

The initial creation of the table involves at least the software and data engineer-

ing practitioners, to decide where the synchronisation points exist. There may be

multiple tools at each synchronisation point, and each may have more than one

mechanism to align the software and data engineering processes. However, the

practitioners must at least decide the metalevel of the exchange and the model(s) at

the (m + 1) metalevel (from Fig. 15.3) that will be used to parse and manipulate the

data. The frequency of synchronisation must also be determined; for example, a

fixed schema may be exchanged once during development, so that the conforming

data can be passed between running tools automatically and continuously via APIs

at runtime. The data and systems’ users can also be involved in the creation of the

table, to identify where the requirements for the project will be met. Also data

managers, curators and software users may be able to identify from the table where

software and data engineering tools interact. An overview of the process is shown in

Fig. 15.5.

Both life cycles are expected to run in parallel, and the aim of a combined

methodology is twofold: to reduce effort and to produce artefacts that reflect best

practice in both software and data engineering. However, the artefacts exchanged at

any given synchronisation point may be critical to further development, which may

lead to overlap in work done, bottlenecks and problematic dependencies. As

engineering life cycle stages produce artefacts, there is potential for waste of effort,

as artefacts may be replaced with input from an external life cycle. In part, this is

mitigated by knowing which artefacts are expected and when in the life cycle, as per

the table. Iteration with a high frequency can also help: synchronisation need not be

final. For example, the schema need not be finalised in the data engineering process

before matching software is developed—an intermediate version can be produced
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so that both sides can continue working and an updated schema can be produced

during the next iteration of the project life cycle.

15.5 ALIGNED Project: A Case Study for Combined
Software and Data Engineering

In this section, we demonstrate how the ALIGNED project has been managed using

the proposed methodology. The ALIGNED project can be seen as a concrete

instantiation of the proposed meta-methodology. In this project, there are 28 tools

with synchronisation points identified. Without the table, these points may have

been overlooked or identified late. Each one of the points now has a strategy for

carrying out the synchronisation. The tools and software components in the devel-

opment of ALIGNED are described in the synchronisation table, below.

Table 15.3 outlines the tool-oriented view of the synchronisation between

software and data engineering life cycles for ALIGNED. Each entry of the table

represents a synchronisation point within the project. Note that there may be several

synchronisation points per table, where multiple tools exploit reuse and best

practice between domains. Also not all cells contain any synchronisation points,

which reflect the scope and focus of the project. The following summary describes

the high-level features of the synchronisation taking place between life cycles at

each point and the development bridges between software and data engineering:

15.5.1 Manual Revision/Author (A)

• Unified Governance Plugins (UGP) (A1, A2): This tool makes use of the RDF

data extracted from a software engineering support tool for bug tracking. It is

Fig. 15.5 Life cycle stages for integrated software and data engineering
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used to assist requirements gathering in the software engineering life cycle by

managing documents and issues (e.g. duplicate detection or suggestions) and

affects the design decisions of the system.

• Dacura (A5): In the Semantic Web maintenance phase, tools can help to identify

software bugs that are caused or triggered by data-quality issues and produce

notifications for authors to correct these data errors.

15.5.2 Classify/Enrich (C)

• ORE (C1): Tools for ontology validation, enrichment and repair that can provide

ontology violations, suggest new ontology axioms or suggest semi-automatic

fixes for the benefit of software engineers.

• Model Catalogue (C2): In the design phase of a software engineering life cycle,

tools are used to create models, by applying domain expertise and reusing

existing models. Models may be used as the basis for software. These schemas

can be transferred from the software engineering domain to the data engineering

domain as ontologies. The ontologies from the data engineering life cycle can

also be transferred to the software engineering life cycle for use as the basis for

creating software.

• ORE (C3): Based on the ontology analysis by ORE, changes are made to the

ontology that software engineering tools can use to improve the underlying

model.

15.5.3 Quality Analysis (D)

• Dacura (D1): In data engineering this tool can be used to produce data-quality

tolerance requirements to constrain the data that is harvested, and these can be

used as the basis for requirement in software engineering.

• RDFUnit (D1): The data engineering tools can be used to identify and analyse

quality issues in the data. The results can give software engineers an insight of

the underlying data set and provide feedback to tackle any quality issues.

• ORE (D1): The tool can provide ontology violations, suggest new ontology

axioms (enrich) or suggest semi-automatic fixes for resolving violations. This

can inform the requirement phase of software engineering, with information

about data-quality issues.

• ORE (D2): Based on the ontology analysis carried out by the tool, design of the

ontology can be improved.

• Dacura (D2): This defines statistical data-quality measures which must be met

by the data. The tool supports the software engineering design phase by

suggesting User Interface refinements to eliminate errors.
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• Dacura (D5): This can help to identify software bugs that have been caused by

data-quality errors and produce notifications for authors to correct these data

errors and make software engineering systems more robust.

• RDFUnit (D5): In the maintenance phase, this tool can be used to identify

constraint violations. Based on the analysis and design implementation, the

violation results can be fed to a quality repair tool or human editors to fix the

violations.

• Repair Framework and Notification (RFN) (E5): This tool checks data sets

against specific data constraints (e.g. expressed as SHACL or ShEx documents)

and provides semi-automatic repair strategies if violations are encountered. The

tool is used in both implementation and maintenance phase because the defined

data constraints influence the implementation of algorithms in the software

engineering phase. Also as taxonomies are changed (additions, removals, merg-

ing with other sources), the data need to be checked for consistency with the new

constraints.

• External Link Validation (ELV) (D5): This tool dereferences links from

PoolParty taxonomies to “external” resources on the Web and provides statistics

on invalid (broken) links. The synchronisation point is used on a regular basis for

maintaining taxonomies created with PoolParty and informs the software engi-

neering phase.

15.5.4 Evolve/Repair (E)

• ORE (E1): The tool can provide ontology violations, suggest new ontology

axioms (enrich) or suggest semi-automatic fixes (for resolving violations). The

analyses of the ORE findings drive the design and improvement of the underly-

ing model in the software engineering life cycle.

• Dacura (E2): This tool can define statistical data-quality measures which must be

met to support software engineering and suggest UI refinements to eliminate

errors.

• ORE (E2): Based on the ontology analysis, this tool drives the design and

improvement of the ontology, and this knowledge is transferred to model

modifications in the software engineering phase.

• Repair Framework and Notification (RFN) (E4): The synchronisation point is

used in both implementation and maintenance phase because the defined data

constraints influence the implementation of algorithms, and, as taxonomies are

changed (additions, removals, merging with other sources), the constraints need

to be satisfied.

• Repair Framework and Notification (RFN) (E5): The tool is used in both

implementation and maintenance phase because the defined data constraints

influence the implementation of algorithms, and, as taxonomies are changed

(additions, removals, merging with other sources), the constraints need to be

satisfied. External Link Validation (ELV): This dereferences links from
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PoolParty taxonomies to “external” resources on the Web and provides statistics

on invalid (broken) links. The tool is used on a regular basis to suggest mainte-

nance tasks in PoolParty.

15.5.5 Search/Browse/Explore (F)

• The Model Catalogue (F1): In the analysis phase of a model-driven software

engineering, this tool is used to explore and gather metadata related to the system

under construction. In the search browse and phase of the data engineering life

cycle, this translates to searching and browsing the ontologies of data set.

• Booster (F5): In the maintenance phase of the software engineering life cycle,

Booster can be used to create tools to extract data from a data store. The data

may be used directly by users or by other tools via an API. In the data

engineering context, Booster-generated tools may be used to provide a well-

defined API and search data and gather data into the data store.

15.5.6 Extract (G)

• Dacura (G1): This can be used to produce data-quality tolerance requirements to

constrain the data that is harvested and informs the software engineering analysis

phase by defining what data is to be harvested.

• Confluence/JIRA Data Extractor (CJDE) (G1): This tool connects to software

engineering management tool (Confluence/JIRA) installations (using the REST

APIs) and extracts relevant requirement information and tickets (e.g. bugs,

improvements) and creates RDF data. The RDF data is used to inform the data

engineering life cycle.

• Confluence/JIRA Data Extractor (CJDE) (G3): This tool extracts relevant

requirement information and tickets and creates RDF. This synchronisation is

used on a regular basis in requirement design phase to understand the changes

needed to the PoolParty tool.

15.5.7 Store/Query (H)

• Booster (H3): In the implementation phase of the software engineering life

cycle, Booster-generated systems provide, create, read, update and delete func-

tionality for data in a data store, as well as implement any user-specified actions,

which can be accessed as triples via an API.

15 Software Project Management for Combined Software and Data Engineering 381



15.6 Related Work

Data-intensive systems require careful alignment between data engineering and

software engineering life cycles to ensure the quality and integrity of the data. Data

stored in such systems typically persists longer than, and may be more valuable

than, the software itself, and so it is key that software development is sympathetic to

the aims of “big data”: scalability to large volumes of data; distributed, large-scale

research across multiple disciplines; and complex algorithms and analysis. These

are normally described in the literature as the four V’s of big data: velocity, variety,
volume and veracity [14].

In existing development methodologies, software and data engineering are

considered as separate concerns [15]. Integrating these introduces a number of

new challenges: software engineering aims of software quality, agility and devel-

opment productivity may conflict with data engineering aims of data quality, data

usability, and researcher productivity. Further challenges include federation of

separate data sources, dynamic and automated schema evolution, multisource

data harvesting, continuous data curation and revision, data reuse and the move

towards unstructured/loosely structured data.

Auer et al. [12] identify challenges within the domain of life cycles for linked

data projects. These include extraction, authoring, natural-language queries, auto-

matic management of resources for linking and linked data visualisation. Typically

seen as concerns for data life cycles, they all have a major impact upon software

development: the authors mention component integration, the management of

provenance information, abstraction to hide complexity and artefact generation

from vocabularies or semantic representations.

Mattmann et al. [16] use their experience of data-intensive software systems

across a range of scientific disciplines to identify seven key challenges which may

be summarised as:

• Data volume: Scalability issues that apply not just to the hardware of the system,

but may affect the tractability and usability of the data.

• Data dissemination: Distributed systems bring challenges of interoperability and

can lead to complex system architectures.

• Data curation: Supporting workflows and tools for improving the quality of

data, in a way that allows subsequent inspection or analysis.

• Use of open source: Complex technologies will depend upon reliable, reusable

components supporting generic functionality.

• Search: Making the data collected available in a usable fashion to users, includ-

ing access to related metadata.

• Data processing and analysis: Boiling down to workflows, tasks, workflow

management systems and resource management components.

• Information modelling: The authors state that “the metadata should be consid-

ered as significant as the data”.
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The authors split these challenges into further subcategories and point out the

many interdependencies between these problems. Zaveri et al. [17] take a broader

view, highlighting inadequate tool support for linked data-quality engineering

processes. Where tool support does exist, these tools are aimed at knowledge

engineers rather than domain experts or software engineers.

Anderson [18] agrees with this issue, describing a more wide-ranging lack of

support for developers of data-intensive systems. He also identifies “the necessity

of a multidisciplinary team that provides expertise on a diverse set of skills and

topics” as a nontechnical issue that can be addressed by projects dealing with large,

distributed data sets. A technical equivalent to this issue is to understand notions of

iteration with respect to the data modelling—he argues that domain knowledge is

required in order to understand data collection and curation. Subsequently, he also

argues for technical knowledge in order to match frameworks with requirements,

emphasising the need for a multidisciplinary team.

Some solutions to these challenges have been identified—most notably in the

area of model-driven software engineering, domain-specific languages and gener-

ative programming. These approaches, in combination with linked data languages

and schemas, enable self-describing data structures with rich semantics included

within the data itself. Aspects of program logic previously encapsulated in software

are now embedded in data models, meaning that the alignment between data and

software engineering becomes even more important. But these approaches can lead

to further problems. Qiu et al. [19] identify two issues: firstly, there is an interaction

between domain experts and application developers, and, secondly, that change to

schema code may not always impact application code in a straightforward manner.

15.7 Conclusion

The proposed methodology has been put into practice and observed for utility:

however, it can be seen as a hypothesis that will be refined in future iterations. One

extension will record and generalise the tasks required at each synchronisation

point. These observations may be condensed into software and data engineering

experience “pearls” [20], for later reuse. As the project progresses, new and

previously unidentified synchronisation points may be added to the table. Similarly,

overlapping synchronisation points may be merged, where there is duplication of

effort. Synchronisation points may also be moved or removed, depending on

changes or errors discovered in the requirements of either software or data engi-

neering project management.

Meanwhile, the methodology is to be refined by monitoring how the methodol-

ogy is used within the consortium, by way of surveys and workshops. Some

analysis is needed on the correspondence between the use cases and the tools

developed on the project. Further analysis may be necessary for user-oriented

perspectives of the methodology on the effect of the synchronisation points on

the development efforts of consortium partners.
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This chapter has presented a methodology for combining software and data

engineering project life cycles. The hurdles to a combined methodology have

been discussed and include the differences in prescriptive and descriptive philoso-

phies and the changing needs from project to project. An agile meta-methodology
for combined project management has been proposed as a solution to the identified

issues. The benefits of the methodology are clear: reuse of artefacts between

domains and application of best practice from both domains transparent project

management when multiple life cycles are involved. The application of the meth-

odology in the interdisciplinary ALIGNED project has been presented as an initial

case study.
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